Privacy-Preserving Distributed k-Anonymity
نویسندگان
چکیده
k-anonymity provides a measure of privacy protection by preventing re-identification of data to fewer than a group of k data items. While algorithms exist for producing k-anonymous data, the model has been that of a single source wanting to publish data. This paper presents a k-anonymity protocol when the data is vertically partitioned between sites. A key contribution is a proof that the protocol preserves k-anonymity between the sites: While one site may have individually identifiable data, it learns nothing that violates k-anonymity with respect to the data at the other site. This is a fundamentally different distributed privacy definition than that of Secure Multiparty Computation, and it provides a better match with both ethical and legal views of privacy.
منابع مشابه
Parallelizing K-Anonymity Algorithm for Privacy Preserving Knowledge Discovery from Big Data
Disclosure control has become inevitable as privacy is given paramount importance while publishing data for mining. The data mining community enjoyed revival after Samarti and Sweeney proposed k-anonymization for privacy preserving data mining. The k-anonymity has gained high popularity in research circles. Though it has some drawbacks and other PPDM algorithms such as l-diversity, t-closeness ...
متن کاملDistributed Privacy-preserving Solutions to k-Anonymity Problem in Wireless Sensor Networks
As important as other security issues, the contextual privacy problem is notable but not thoroughly addressed in distributed networking systems, such as Wireless Sensor Networks(WSNs). An adversary can launch contextual privacy attacks via assigning the linking probability of users’ identities and target messages during data transmissions, to further acquire the sensitive relationship informati...
متن کاملA Survey of Privacy Preserving Data Publishing using Generalization and Suppression
Nowadays, information sharing as an indispensable part appears in our vision, bringing about a mass of discussions about methods and techniques of privacy preserving data publishing which are regarded as strong guarantee to avoid information disclosure and protect individuals’ privacy. Recent work focuses on proposing different anonymity algorithms for varying data publishing scenarios to satis...
متن کاملA Novel Anonymity Algorithm for Privacy Preserving in Publishing Multiple Sensitive Attributes
Publishing the data with multiple sensitive attributes brings us greater challenge than publishing the data with single sensitive attribute in the area of privacy preserving. In this study, we propose a novel privacy preserving model based on k-anonymity called (α, β, k)-anonymity for databases. (α, β, k)anonymity can be used to protect data with multiple sensitive attributes in data publishing...
متن کاملEnhancing Informativeness in Data Publishing while Preserving Privacy using Coalitional Game Theory
k-Anonymity is one of the most popular conventional techniques for protecting the privacy of an individual. The shortcomings in the process of achieving k-Anonymity are presented and addressed by using Coalitional Game Theory (CGT) [1] and Concept Hierarchy Tree (CHT). The existing system considers information loss as a control parameter and provides anonymity level (k) as output. This paper pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005